Copied to
clipboard

G = C42.185D10order 320 = 26·5

5th non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.185D10, C8⋊C49D5, (C2×C8).158D10, C10.47(C8○D4), C20.8Q837C2, D101C8.16C2, D10⋊C4.18C4, C4.131(C4○D20), C20.247(C4○D4), (C4×C20).230C22, (C2×C20).815C23, (C2×C40).312C22, C10.D4.18C4, C42⋊D5.12C2, C2.8(D20.2C4), C2.13(C42⋊D5), C54(C42.7C22), C10.29(C42⋊C2), (C4×Dic5).201C22, (C4×C52C8)⋊22C2, (C5×C8⋊C4)⋊18C2, (C2×C4).62(C4×D5), C22.100(C2×C4×D5), (C2×C20).322(C2×C4), (C2×C4×D5).229C22, (C2×Dic5).17(C2×C4), (C22×D5).16(C2×C4), (C2×C4).757(C22×D5), (C2×C10).171(C22×C4), (C2×C52C8).305C22, SmallGroup(320,336)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.185D10
C1C5C10C20C2×C20C2×C4×D5C42⋊D5 — C42.185D10
C5C2×C10 — C42.185D10
C1C2×C4C8⋊C4

Generators and relations for C42.185D10
 G = < a,b,c,d | a4=b4=1, c10=b, d2=a2b, ab=ba, cac-1=ab2, ad=da, bc=cb, bd=db, dcd-1=a2c9 >

Subgroups: 302 in 96 conjugacy classes, 47 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic5, C20, C20, D10, C2×C10, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C42⋊C2, C52C8, C40, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C42.7C22, C2×C52C8, C4×Dic5, C10.D4, D10⋊C4, C4×C20, C2×C40, C2×C4×D5, C4×C52C8, C20.8Q8, D101C8, C5×C8⋊C4, C42⋊D5, C42.185D10
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C4○D4, D10, C42⋊C2, C8○D4, C4×D5, C22×D5, C42.7C22, C2×C4×D5, C4○D20, C42⋊D5, D20.2C4, C42.185D10

Smallest permutation representation of C42.185D10
On 160 points
Generators in S160
(1 117 74 131)(2 98 75 152)(3 119 76 133)(4 100 77 154)(5 81 78 135)(6 102 79 156)(7 83 80 137)(8 104 41 158)(9 85 42 139)(10 106 43 160)(11 87 44 141)(12 108 45 122)(13 89 46 143)(14 110 47 124)(15 91 48 145)(16 112 49 126)(17 93 50 147)(18 114 51 128)(19 95 52 149)(20 116 53 130)(21 97 54 151)(22 118 55 132)(23 99 56 153)(24 120 57 134)(25 101 58 155)(26 82 59 136)(27 103 60 157)(28 84 61 138)(29 105 62 159)(30 86 63 140)(31 107 64 121)(32 88 65 142)(33 109 66 123)(34 90 67 144)(35 111 68 125)(36 92 69 146)(37 113 70 127)(38 94 71 148)(39 115 72 129)(40 96 73 150)
(1 11 21 31)(2 12 22 32)(3 13 23 33)(4 14 24 34)(5 15 25 35)(6 16 26 36)(7 17 27 37)(8 18 28 38)(9 19 29 39)(10 20 30 40)(41 51 61 71)(42 52 62 72)(43 53 63 73)(44 54 64 74)(45 55 65 75)(46 56 66 76)(47 57 67 77)(48 58 68 78)(49 59 69 79)(50 60 70 80)(81 91 101 111)(82 92 102 112)(83 93 103 113)(84 94 104 114)(85 95 105 115)(86 96 106 116)(87 97 107 117)(88 98 108 118)(89 99 109 119)(90 100 110 120)(121 131 141 151)(122 132 142 152)(123 133 143 153)(124 134 144 154)(125 135 145 155)(126 136 146 156)(127 137 147 157)(128 138 148 158)(129 139 149 159)(130 140 150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 44 53 21 30 64 73)(2 52 45 29 22 72 65 9)(3 28 46 71 23 8 66 51)(4 70 47 7 24 50 67 27)(5 6 48 49 25 26 68 69)(11 20 54 63 31 40 74 43)(12 62 55 39 32 42 75 19)(13 38 56 41 33 18 76 61)(14 80 57 17 34 60 77 37)(15 16 58 59 35 36 78 79)(81 102 145 126 101 82 125 146)(83 120 147 144 103 100 127 124)(84 143 148 99 104 123 128 119)(85 98 149 122 105 118 129 142)(86 121 150 117 106 141 130 97)(87 116 151 140 107 96 131 160)(88 139 152 95 108 159 132 115)(89 94 153 158 109 114 133 138)(90 157 154 113 110 137 134 93)(91 112 155 136 111 92 135 156)

G:=sub<Sym(160)| (1,117,74,131)(2,98,75,152)(3,119,76,133)(4,100,77,154)(5,81,78,135)(6,102,79,156)(7,83,80,137)(8,104,41,158)(9,85,42,139)(10,106,43,160)(11,87,44,141)(12,108,45,122)(13,89,46,143)(14,110,47,124)(15,91,48,145)(16,112,49,126)(17,93,50,147)(18,114,51,128)(19,95,52,149)(20,116,53,130)(21,97,54,151)(22,118,55,132)(23,99,56,153)(24,120,57,134)(25,101,58,155)(26,82,59,136)(27,103,60,157)(28,84,61,138)(29,105,62,159)(30,86,63,140)(31,107,64,121)(32,88,65,142)(33,109,66,123)(34,90,67,144)(35,111,68,125)(36,92,69,146)(37,113,70,127)(38,94,71,148)(39,115,72,129)(40,96,73,150), (1,11,21,31)(2,12,22,32)(3,13,23,33)(4,14,24,34)(5,15,25,35)(6,16,26,36)(7,17,27,37)(8,18,28,38)(9,19,29,39)(10,20,30,40)(41,51,61,71)(42,52,62,72)(43,53,63,73)(44,54,64,74)(45,55,65,75)(46,56,66,76)(47,57,67,77)(48,58,68,78)(49,59,69,79)(50,60,70,80)(81,91,101,111)(82,92,102,112)(83,93,103,113)(84,94,104,114)(85,95,105,115)(86,96,106,116)(87,97,107,117)(88,98,108,118)(89,99,109,119)(90,100,110,120)(121,131,141,151)(122,132,142,152)(123,133,143,153)(124,134,144,154)(125,135,145,155)(126,136,146,156)(127,137,147,157)(128,138,148,158)(129,139,149,159)(130,140,150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,44,53,21,30,64,73)(2,52,45,29,22,72,65,9)(3,28,46,71,23,8,66,51)(4,70,47,7,24,50,67,27)(5,6,48,49,25,26,68,69)(11,20,54,63,31,40,74,43)(12,62,55,39,32,42,75,19)(13,38,56,41,33,18,76,61)(14,80,57,17,34,60,77,37)(15,16,58,59,35,36,78,79)(81,102,145,126,101,82,125,146)(83,120,147,144,103,100,127,124)(84,143,148,99,104,123,128,119)(85,98,149,122,105,118,129,142)(86,121,150,117,106,141,130,97)(87,116,151,140,107,96,131,160)(88,139,152,95,108,159,132,115)(89,94,153,158,109,114,133,138)(90,157,154,113,110,137,134,93)(91,112,155,136,111,92,135,156)>;

G:=Group( (1,117,74,131)(2,98,75,152)(3,119,76,133)(4,100,77,154)(5,81,78,135)(6,102,79,156)(7,83,80,137)(8,104,41,158)(9,85,42,139)(10,106,43,160)(11,87,44,141)(12,108,45,122)(13,89,46,143)(14,110,47,124)(15,91,48,145)(16,112,49,126)(17,93,50,147)(18,114,51,128)(19,95,52,149)(20,116,53,130)(21,97,54,151)(22,118,55,132)(23,99,56,153)(24,120,57,134)(25,101,58,155)(26,82,59,136)(27,103,60,157)(28,84,61,138)(29,105,62,159)(30,86,63,140)(31,107,64,121)(32,88,65,142)(33,109,66,123)(34,90,67,144)(35,111,68,125)(36,92,69,146)(37,113,70,127)(38,94,71,148)(39,115,72,129)(40,96,73,150), (1,11,21,31)(2,12,22,32)(3,13,23,33)(4,14,24,34)(5,15,25,35)(6,16,26,36)(7,17,27,37)(8,18,28,38)(9,19,29,39)(10,20,30,40)(41,51,61,71)(42,52,62,72)(43,53,63,73)(44,54,64,74)(45,55,65,75)(46,56,66,76)(47,57,67,77)(48,58,68,78)(49,59,69,79)(50,60,70,80)(81,91,101,111)(82,92,102,112)(83,93,103,113)(84,94,104,114)(85,95,105,115)(86,96,106,116)(87,97,107,117)(88,98,108,118)(89,99,109,119)(90,100,110,120)(121,131,141,151)(122,132,142,152)(123,133,143,153)(124,134,144,154)(125,135,145,155)(126,136,146,156)(127,137,147,157)(128,138,148,158)(129,139,149,159)(130,140,150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,44,53,21,30,64,73)(2,52,45,29,22,72,65,9)(3,28,46,71,23,8,66,51)(4,70,47,7,24,50,67,27)(5,6,48,49,25,26,68,69)(11,20,54,63,31,40,74,43)(12,62,55,39,32,42,75,19)(13,38,56,41,33,18,76,61)(14,80,57,17,34,60,77,37)(15,16,58,59,35,36,78,79)(81,102,145,126,101,82,125,146)(83,120,147,144,103,100,127,124)(84,143,148,99,104,123,128,119)(85,98,149,122,105,118,129,142)(86,121,150,117,106,141,130,97)(87,116,151,140,107,96,131,160)(88,139,152,95,108,159,132,115)(89,94,153,158,109,114,133,138)(90,157,154,113,110,137,134,93)(91,112,155,136,111,92,135,156) );

G=PermutationGroup([[(1,117,74,131),(2,98,75,152),(3,119,76,133),(4,100,77,154),(5,81,78,135),(6,102,79,156),(7,83,80,137),(8,104,41,158),(9,85,42,139),(10,106,43,160),(11,87,44,141),(12,108,45,122),(13,89,46,143),(14,110,47,124),(15,91,48,145),(16,112,49,126),(17,93,50,147),(18,114,51,128),(19,95,52,149),(20,116,53,130),(21,97,54,151),(22,118,55,132),(23,99,56,153),(24,120,57,134),(25,101,58,155),(26,82,59,136),(27,103,60,157),(28,84,61,138),(29,105,62,159),(30,86,63,140),(31,107,64,121),(32,88,65,142),(33,109,66,123),(34,90,67,144),(35,111,68,125),(36,92,69,146),(37,113,70,127),(38,94,71,148),(39,115,72,129),(40,96,73,150)], [(1,11,21,31),(2,12,22,32),(3,13,23,33),(4,14,24,34),(5,15,25,35),(6,16,26,36),(7,17,27,37),(8,18,28,38),(9,19,29,39),(10,20,30,40),(41,51,61,71),(42,52,62,72),(43,53,63,73),(44,54,64,74),(45,55,65,75),(46,56,66,76),(47,57,67,77),(48,58,68,78),(49,59,69,79),(50,60,70,80),(81,91,101,111),(82,92,102,112),(83,93,103,113),(84,94,104,114),(85,95,105,115),(86,96,106,116),(87,97,107,117),(88,98,108,118),(89,99,109,119),(90,100,110,120),(121,131,141,151),(122,132,142,152),(123,133,143,153),(124,134,144,154),(125,135,145,155),(126,136,146,156),(127,137,147,157),(128,138,148,158),(129,139,149,159),(130,140,150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,44,53,21,30,64,73),(2,52,45,29,22,72,65,9),(3,28,46,71,23,8,66,51),(4,70,47,7,24,50,67,27),(5,6,48,49,25,26,68,69),(11,20,54,63,31,40,74,43),(12,62,55,39,32,42,75,19),(13,38,56,41,33,18,76,61),(14,80,57,17,34,60,77,37),(15,16,58,59,35,36,78,79),(81,102,145,126,101,82,125,146),(83,120,147,144,103,100,127,124),(84,143,148,99,104,123,128,119),(85,98,149,122,105,118,129,142),(86,121,150,117,106,141,130,97),(87,116,151,140,107,96,131,160),(88,139,152,95,108,159,132,115),(89,94,153,158,109,114,133,138),(90,157,154,113,110,137,134,93),(91,112,155,136,111,92,135,156)]])

68 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I4J4K5A5B8A8B8C8D8E···8L10A···10F20A···20H20I···20P40A···40P
order12222444444444445588888···810···1020···2020···2040···40
size1111201111222220202022444410···102···22···24···44···4

68 irreducible representations

dim1111111122222224
type+++++++++
imageC1C2C2C2C2C2C4C4D5C4○D4D10D10C8○D4C4×D5C4○D20D20.2C4
kernelC42.185D10C4×C52C8C20.8Q8D101C8C5×C8⋊C4C42⋊D5C10.D4D10⋊C4C8⋊C4C20C42C2×C8C10C2×C4C4C2
# reps11221144242488168

Matrix representation of C42.185D10 in GL6(𝔽41)

100000
010000
00403100
000100
0000935
0000032
,
100000
010000
0032000
0003200
000090
000009
,
770000
34400000
0014000
00302700
00001418
0000127
,
770000
40340000
0014000
0001400
00002723
0000014

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,31,1,0,0,0,0,0,0,9,0,0,0,0,0,35,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[7,34,0,0,0,0,7,40,0,0,0,0,0,0,14,30,0,0,0,0,0,27,0,0,0,0,0,0,14,1,0,0,0,0,18,27],[7,40,0,0,0,0,7,34,0,0,0,0,0,0,14,0,0,0,0,0,0,14,0,0,0,0,0,0,27,0,0,0,0,0,23,14] >;

C42.185D10 in GAP, Magma, Sage, TeX

C_4^2._{185}D_{10}
% in TeX

G:=Group("C4^2.185D10");
// GroupNames label

G:=SmallGroup(320,336);
// by ID

G=gap.SmallGroup(320,336);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,120,422,387,58,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=b,d^2=a^2*b,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*c^9>;
// generators/relations

׿
×
𝔽